Scoping Review

A Scoping Review of Evidence to Develop an Evidenced-Based Protocol on the Prevention and Treatment of Constipation in the Critically Ill

Mathilde Elsa Christensen*, CCN, MSc 1-3; Maria Ingrid Bianca Klette, CCN, MSc2-3; Britt Sætre Hansen, CCN, PhD2-3

Citation: Christensen ME, Klette MIB, Hansen BS. Constipation in the critically ill: A systematic review and evidence-based protocol on constipation in the critically ill patient. *International Journal of Critical Care* 2023;17(3):22-65. doi: 10.29173/ijcc51 10.29173/ijcc75

Academic Editor(s): Ged Williams, RN, Crit. Care Cert., LLM, MHA, FACN, FACHSM, FAAN and Elizabeth Papathanassoglou, PhD, MSc. RN

Managing Editor: Patricia Zrelak, PhD, RN, NEA-bc, SCRN, CNRN, ASC-BC, CCRN-K, PHN, FAHA

Published: November 2023

Acknowledgments: Members of the expert group and the expert librarian. Kristian Strand, MD, PhD, Stavanger University Hospital, Oddvar Sandvik MD, PhD, Stavanger University Hospital and Kari Mette Ellingsen, CCN, MS, Advanced Practitioner. Elisabeth Hundstad Molland expert librarian.

by-nc/4.0/).

Copyright: © 2023 by the authors. Open access publication under the terms and conditions of the Creative Commons Attribution (CC BY NC) license (https://creativecommons.org/licenses/

1. University of Agder,

- ^{2.} University of Stavanger
- 3. Stavanger University Hospital.

Corresponding author: Mathilde Elsa Christensen, christensen.mathilde@gmail.com

ABSTRACT

Aims and objectives: To define constipation and review and synthesize evidence for how critical care nurses and physicians can prevent and treat constipation in critically ill patients admitted to the ICU.

Background: Constipation is a common complication amongst critically ill patients. The rate of constipation is reported from 15-83%. Basic nursing tasks in a high-tech environment might get low priority and lead to care left undone. Constipation increases both morbidity and mortality and is associated with worse functional outcomes in these patients. Management of constipation is therefore of medical and health economic interest and is an area where significant improvement is possible.

Design: A scoping review with a systematic search of the literature was conducted to perform a synthesis of the evidence.

Methods: A total of 19 studies investigating preventative and management measures of constipation in the critically ill admitted to the ICU were included. Appraisal of Guidelines for Research and Evaluation (AGREE II) was followed. Critical Appraisal Skills Program (CASP) was applied to assess the quality of the included studies.

Conclusion: A systematic interprofessional approach to preventing and treating constipation is important to evaluate and improve continuously in an evidence-based manner. More research is needed. Studies investigating non-pharmacological measures are scarce.

Relevance to clinical practice: This interprofessional approach may ensure a better quality of advanced nursing care in the ICU. The evidence-based protocol must be implemented in the education of advanced nursing and physician programs.

Keywords: Bowel care, constipation, critical care, critically ill, evidence-based nursing.

INTRODUCTION

Constipation is an underestimated complication for the critically ill patient, which is often untreated until it leads to symptoms (Lat et al., 2010). Nursing staff in intensive care units (ICUs) play an important part in monitoring and evaluating bowel movements. This is significant in preventing complications related to constipation (Perez-Sanchez et al., 2017). The reported incidence of constipation in the ICU varies between 15% and 83% (Aikawa et al., 2022; Habeeb et al., 2022; Mostafa et al., 2003). This range could be due to incomplete documentation (McKenna

et al., 2001). Perez-Sanchez et al. (2017) reported that 63% of critically ill patients experienced constipation. They found that there was a lack of agreement in defining constipation in critically ill patients among experts. Studies demonstrated that constipation is associated with length of ICU stay, as well as increased morbidity and mortality (Azevedo et al., 2009, Guerra et al., 2013, Gacouin et al., 2010). Complications related to constipation may include higher abdominal pressure, bacterial translocation, feeding intolerance, discomfort, higher morbidity, and increased mortality (Wanik et al., 2019).

An evidence-based bowel management protocol resulted in improved daily defecation in mechanically ventilated patients and a reduction in the sequential organ failure assessment score (SOFA) (Azevedo et al., 2009). Inter-professional team discussions and plans are platforms for learning and research dissemination in the ICU (Hansen & Severinsson, 2009); thus, research studies on constipation and its consequences are important for higher prioritization of this problem.

In the holistic care of critically ill patients, the area of bowel care is often overlooked. The dominant care delivery model within nursing and acute care has been the diseased-focused model of diagnosis and treatment, according to Vollman (2013). The prevention of complications has unfortunately received less priority. Within critical care nursing, the fundamentals of care and evidence-based practice are essential in high-quality treatment and care. With the primary concern of treating and caring for the patients to preserve life, less priority has been given to the problem of bowel care (Dorman et al., 2004). Constipation has been paid scant attention, and issues of failure to defecate in critically ill patients are difficult to determine (Mostafa et al., 2003). Patients' experiences from post-intensive care follow-up clinics have described constipation as a distressing part of their stay (Hill et al., 1998). Critically ill patients are in a situation of limited autonomy, and constipation can be an unnecessary strain. Preventing and treating constipation might be one of many tasks in missed nursing care, defined as care that nurses regard as necessary but leave undone due to lack of time (Ball et al., 2014).

The shortage of CCNs worldwide has already led to a recruitment problem for ICUs (Endacott et al., 2015). Strong evidence shows that lower nursing staff levels in hospitals are associated with worse patient outcomes (Ball et al., 2014). Kalisch and Xie (2014) found that patient-identified missed nursing care predicts adverse events. Errors that are committed and care that is omitted need attention. In a busy ward, essential nursing tasks that request documentation often receive priority, and preventive activities are overlooked. The prevention of constipation in ICUs is one such preventive activity.

Background

Constipation may lead to severe complications. Mechanical consequences of constipation may arise, abdominal pressure will increase and lead to reduced lung

compliance and high intrathoracic pressure (Azevedo et al., 2009, Fukuda et al., 2016, Mostafa et al., 2003). Bacterial translocation in critically ill patients may lead to higher risk for infection as a direct complication of constipation (Azevedo et al., 2009, Gacouin et al., 20109). Critically ill patients that had bowel movements after 6 days had a high risk of sepsis with a high SOFA score (Gacouin et al., 2010). Mechanically ventilated patients have a significant risk of delirium if they are constipated (Smonig et al., 2016). Constipation leads to prolonged stay in the ICU (van der Spoel et al., 2007, van der Spoel et al., 2006). Bowel movements after 6 days have furthermore a negative impact on the critically ill patients' outcome (Prat et al., 2016). Two randomized, controlled trials (RCTs) have shown that severity of morbidity and time before first bowel movement had a significant association with mortality in the patients admitted in ICU (de Azevedo et al., 2015, van der Spoel et al., 2007).

The aetiology of constipation in critically ill patients is multifactorial. Maintenance of normal fluid and electrolyte balance is important in such patients (Btaiche et al., 2010). Adequate hydration and encouraging mobilization when possible are also essential (Vincent & Preiser 2015). Early enteral nutrition is significantly effective for occurrence of bowel movement and is recommended for critically ill patients (Nassar et al., 2009). However, limited research has been performed on non-pharmacological prevention strategies and treatment of constipation in the critically ill patients.

The authors' pre-understanding

As CCNs in a general ICU in a Norwegian university hospital, we have experienced that constipation is an under-estimated problem and that prevention of constipation receives low priority, is not discussed inter-professionally in a daily manner and there is no protocol for its management. We observed a high rate of constipated patients in the local ICU and conducted baseline measures that indicated a constipation rate of 66–80% after application of the following criterion: 3 days with no bowel movement (Reintam et al., 2012). We experienced that prevention and treatment were often assigned randomly and without a plan. Documentation of the patients' bowel function was at a minimum, with limited description of volume, consistency, and frequency. Prevention and treatment of constipation were not included in the inter-professional daily plan. In addition, constipation is hardly mentioned in the local CCN post-graduate/master educational curriculum. Pilot telephone interviews with other Norwegian and Danish ICUs revealed uncertainty in prevention and treatment of constipation.

Aim

The aim of this scoping review is therefor to obtain an overview of existing evidence on constipation definitions, prevention, and treatment of constipation in critically ill patients. The review was guided by the following review questions:

- 1. How is constipation in the critically ill patients defined?
- 2. What are the prevention and treatment recommendations regarding constipation in critically ill patients?

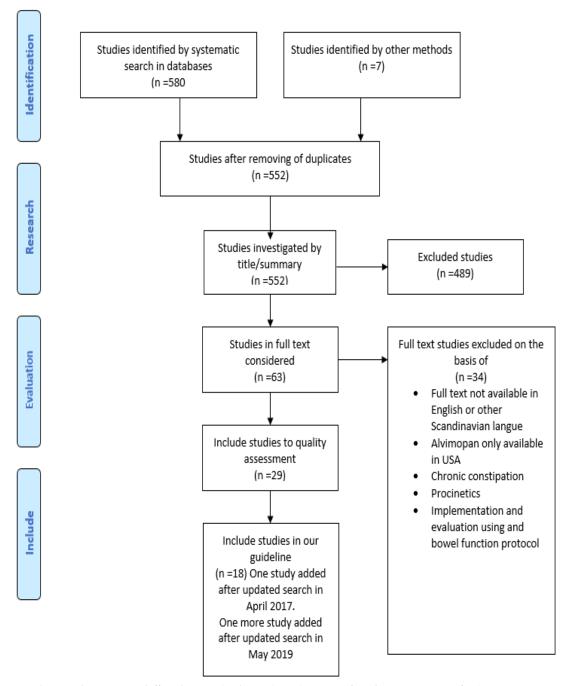
Based on this review and consensus from an inter-professional expert group, we also wanted to provide recommendations for prevention and treatment of constipation in critically ill patients in ICUs. The recommendations were made for physicians and nurses because constipation prevention and treatment are a shared responsibility.

METHODS

A scoping review design was used due to the absence of published reviews and on the topic of prevention and treatment of constipation in critically ill ICU patients.

Search methods

The review was approved by the head of the Research Department of the hospital where it was conducted. Together with an expert librarian, we performed a systematic literature search structured after the S-pyramid (Dicenso et al., 2009) to provide the best scientific recommendations. The search was limited to studies in Nordic and English languages. The first systematic literature search was conducted in November 2016–February 2017. The final updated systematic literature search was conducted in May 2023. All studies including mechanically ventilated and non-mechanically ventilated critically ill adults over 18 years old admitted in medical or surgical ICUs were included in this scoping review.


The search was conducted together with an expert librarian in the following databases: UpToDate, BMJ Best Practice, National Guideline Clearinghouse, NICE guidance, Norwegian, Swedish, and Danish networks for Procedures, Joanna Briggs Institute, MEDLINE, Embase, CINAHL, The Cochrane Library, Epistemonikos, Clinical Evidence, PEDro (Physiotherapy Evidence Database), OTSeeker Clinical Queries in PubMed. Search terms used was "obstipation", "constipation", "colonic inertia", "dyschezia", "intensive", "critical care", "intensive care", "intensive care units/ICU", "intensive care nursing", "critical care nursing" and "practice guideline"

Search outcome

A total of 552 studies were investigated by the title and article summary. Of these, 489 studies were excluded due to the lack of relevance for this review. Most of the studies identified did not investigate constipation in the critically ill patients admitted in ICU, but other patient categories. There were 63 studies consider based on full text, and 29 were included for quality assessment which will be thoroughly described in the next section. Some of the studies were excluded because they scoped a bowel movement protocol being implemented, but with no scientific methodology or description of the measures recommended. After the first

systematic search in 2017 18 studies were included. Two updated systematically searches (2019 and 2023) revealed five more studies. 23 studies were included (figure 1 PRISMA flow chart)

Figure 1.PRISMA Flowchart for Literature Review

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 2009;6(7):e1000097. doi:10.1371/journal.pmed1000097

Quality appraisal

To assess quality of the included studies, the Appraisal of Guidelines for Research & Evaluation (AGREE II) was adopted. In development of evidence-based guidelines the tool provides a rigorous methodology (Brouwers et al., 2010). The first and second authors performed the quality appraisal using the Critical Appraisal Skills Programme (CASP) checklist (Tables 1, 2 and 3) (CASP, 2023). A local interdisciplinary group consisting of an experienced intensivist, gastric surgeon, advanced practitioner, nutritionist and two CCNs (the first and second authors) were invited to review the quality of the research and discuss the research findings as experts. There were no economical or personal interests involved in the interdisciplinary group. This local expert group discussed the relevance of including research on constipation in cancer patients. Consensus was established that the situation of critically ill patients is unique because they are often in a comatose condition, which is affected by several physiological factors. Therefore, their situation is not comparable with that of other patient groups.

The quality-appraisal process was initially performed by the first and second authors individually and then together using the CASP checklists (CASP, 2023). Critical appraisal of the included studies' strengths of recommendations was difficult to conclude on due to varying aims, methods, measures, analyses, and conflicting recommendations.

Table 1.Critical Appraisal Skills Programme Scores for Randomized Clinical Trials

RCT	Authors	Q 1	Q 2	Q 3	Q 4	Q 5	Q 6	Q 7	Q 8	Q 9	Q 10	Q 11	Total
1	Azevedo et al 2015, England	2	2	2	2	2	2	2	2	2	2	2	22
2	Masri et al, 2010, United Arab Emirates	2	2	2	2	2	0	2	2	2	1	1	18
3	Van der Spoel et al, 2007, Netherlands	2	2	2	2	2	2	2	2	2	2	2	18
4	Dehghan et al, 2018, Iran	2	2	2	2	1	2	2	2	2	2	2	21
5	Patel et al, 2020, USA	2	2	2	2	2	2	2	2	2	2	2	22

Table 2.Critical Appraisal Skills Programme Scores for Case Control Studies

Case Control	Authors	Q 1	Q 2	Q 3	Q 4	Q 5	Q 6a	Q 6b	Q 7	Q 8	Q 9	Q 10	Q 11	Total
1	Guardiola et al, 2016, Spain	2	2	2	2	2	2	2	2	2	2	2	2	24
2	Knowles et al, 2014, Australia	2	2	2	2	2	2	2	2	1	2	2	2	23
3	McKenna et al, 2001, Australia	2	2	2	2	2	2	2	2	2	2	2	2	24
4	McPeake et al, 2011, Scotland	2	2	2	2	2	2	2	2	2	2	2	2	24
5	Patanwala et al, 2006, USA	2	2	2	2	2	1	2	2	2	2	2	2	23
6	Sawh et al, 2012, England	2	2	2	2	2	2	2	2	2	1	2	2	23

Table 3.Critical Appraisal Skills Programme Scores for Cohort Studies

Co-		Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Tota
hort	Authors	1	2	3	4	5a	5b	6a	6b	7	8	9	10	11	12	1
1	Arpino et al, 2009, USA	2	2	1	1	1	2	2	2	1	1	1	2	2	2	22
2	Bishop et al, 2010, Australia	2	2	1	2	2	2	2	2	2	2	2	2	2	2	27
3	Dorman et al, 2004, England	2	1	1	2	0	0	2	2	2	2	2	2	2	2	22
4	Gibson et al, 2014, USA	2	1	1	2	1	2	2	2	2	2	2	2	2	2	25
5	Merchan et al, 2017, USA	2	2	1	2	2	2	2	2	2	1	1	2	2	2	25
6	Ring et al, 2011, Australia	2	2	1	2	0	0	2	2	2	2	2	2	2	2	23
7	Ritchie et al, 2008, England	2	2	1	2	2	2	2	2	2	1	1	2	2	2	25
8	Habeeb, et al, 2022, USA	2	2	1	2	1	1	2	2	2	1	2	2	2	2	24

 $Reference: Critical\ Appraisal\ Skills\ Programme\ (2018).\ CASP\ Checklist.\ Available\ at:\ https://casp-uk.net/wp-content/uploads/2018/01/CASP-Systematic-Review-Checklist_2018.pdf\ Accessed:\ 22/6-2019.$

Disagreements were discussed in the inter-professional expert group. Two included reviews (Btaiche et al., 2010; Lat et al., 2010) were not critically appraised due to limited description of methodology; however, they were discussed as expert statements by the interdisciplinary expert group.

Data abstraction and synthesis

Data were abstracted, visualised in a matrix after the process of quality appraisal with CASP checklists. The data were compilated in a summary of findings, which is the fundament for the evidence presented in the results. The results were then put in a schematic protocol presented as a flow chart model. After completion, the synthesis with recommendations were sent out to an official hearing from key stakeholders, both internal and external. After the feedback was included, the synthesis was finished and ready for implementation.

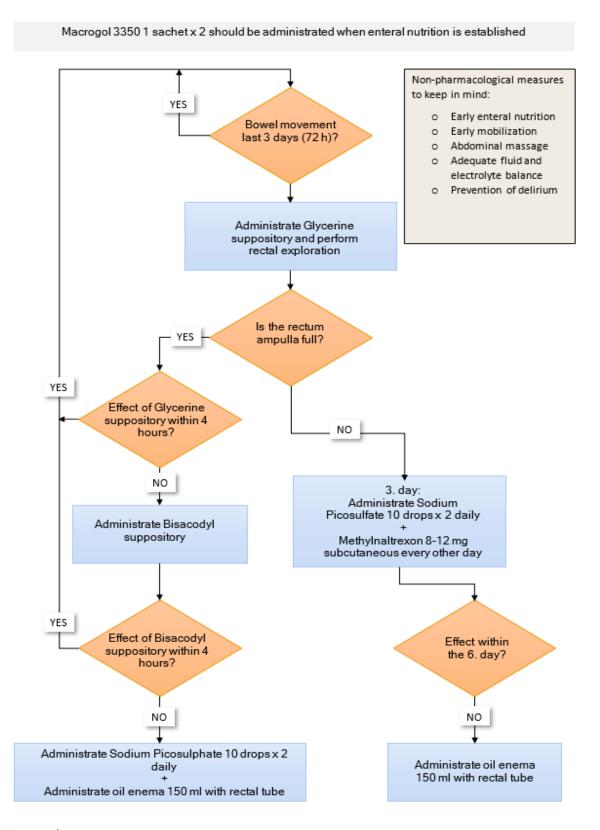
RESULTS

The results are presented to align with the research questions with individual articles summarized in the summary table (Appendix 1) and are reflected in the Protocol for the Prevention and Treatment of Consiption in the Critically Ill Based on a this Scopoing Literature Review (Figure 2).

Research question 1: How is constipation defined in critically ill patients?

The definition of constipation found in most included studies was no bowel movement within 3 ICU days (72 hours) (Azevedo et al., 2009, Bishop et al., 2010, Dorman et al., 2004, Nassar et al., 2009, Sawh et al., 2012, van der Spoel et al., 2007). The European Society of Intensive Care Medicine (Blaser, 2012) defines constipation in the ICU as 3 days without bowel movement.

The interdisciplinary expert group's conclusion was that the definition of constipation is no bowel movement within 3 ICU days.


Research question 2: What are the prevention and treatment recommendations regarding constipation in critically ill patients?

Non-pharmacological prevention and treatment

An Australian cohort study with 16 critically ill patients conducted by Ring (2011) included prune juice as a prophylactic intervention in the bowel management protocol, without effect. Dehghan et al. (2018) found in a RCT performed in Iran that abdominal massage had an effect on constipation in the critically ill patients. By providing an abdominal massage for 15 minutes twice a day for 3 days, time to first defecation was significantly reduced. The proportion of constipated patients in the intervention group was 37% versus 68% in the control group (Dehghan et al., 2018).

Protocol for the Prevention and Treatment of Consiption in the Critically Ill Based on a Scopoing Review of the Literature

Pharmacological prevention and treatment Laxatives

In a RCT from the Netherlands van der Spoel et al. (2007), compared the effect of lactulose with macrogol (PEG4000) on 308 critically ill patients. The results showed that both lactulose and macrogol had the same effect on bowel movement versus the placebo. The study also revealed that macrogol had a better effect on opioidinduced constipation than lactulose (van der Spoel et al., 2007). Masri et al. (2010) studied the effect of lactulose on bowel movement in a RCT of 100 critically ill patients from the United Arab Emirates. Lactulose was administered every 12 hours for the first 72 hours in the ICU. They found that 18% patients in the lactulose group versus 4% in the control group had bowel movements within 72 hours. An Australian pilot cohort study on 44 ICU patients, showed significant association with lactulose administration and bowel movement and stool volume (Bishop et al., 2010). Guardiola et al. (2016) found in a Spanish case control study that macrogol administrated to 197 critically ill patients had a better effect when administered prophylactic the first day of admission versus administered as a treatment. The same study also found less administration of other laxatives to patients who were administered macrogol (Guardiola et al., 2016). Furthermore, an American review conducted by Lat et al. (2010) describes the use of osmotic and stimulant laxatives alone or in combination with a stool softener with a positive effect on opioidinduced constipation in patients receiving ICU treatment (Lat et al., 2010).

Opioid receptor antagonists

In five of the included studies, medication-induced constipation in ICUs was explored. The safety of enterally administrated naloxone as prophylactic or treatment of opioid-induced constipation in critically ill patient was assessed by Arpino and Thompson (2009). They found no association with alteration in sedation score, dose administrated of fentanyl and midazolam or in vital measurements, but the number of bowel movements within 24 hours increased after naloxone administration (Arpino and Thompson, 2009). A small pilot study, however, does not support this finding (Duprey et al., 2022)

A study conducted by Sawh et al. (2012) sought to assess the efficiency of methylnaltrexone compared with other conventional laxatives. Methylnaltrexone was very effective to produce defecation, and furthermore the drug was well tolerated and did not demonstrate any change or reversed effect of fentanyl (Sawh et al., 2012). However, this was not supported by Patel (2020), who found no significant difference between methylnaltrexone and regular laxatives (Patel et al., 2020). Methylnaltrexone can be administered for a short duration to critically ill patients and leads to reduced time to bowel movement (Lat et al., 2010).

Naloxegol and methylnaltrexone were administered to 100 critically ill patients in a medical ICU ward where 48 patients received methylnaltrexone and 52 patients received naloxegol. Bowel movement occurred within 30 hours in the naloxegol group and 24 hours in the methylnaltrexone group (Merchan et al., 2017). However, Habeeb (2022) studied effect of enteral naloxone versus methylnaltrexone on time to first bowel movement in ICU patients, and found that naloxone was a significant predictor of bowel movement within 48 hours, with 18 hours to first bowel movement in the naloxone group versus 41 hours in the methylnaltrexone group (Habeeb et al., 2022).

Enemas

The effect of enemas on constipation were not discussed in any of the included studies. However, bowel management protocols from the included studies and Nordic hospitals recommended the use of enemas in critically ill ICU patients. We found that none of the Nordic protocols were evidence based.

Synthesis of the evidence

Based on these findings and consensus from the inter-professional expert group, we performed a synthesis of the evidence.

DISCUSSION

The aim of this systematic review was to obtain an overview of existing evidence on definitions, prevention and treatment of constipation in critically ill patients. We found conflicting or unclear definitions of constipation even among researchers and members of the inter-professional expert group established for this study. We also found a variety of prevention and treatment suggestions/strategies underlining the importance of an evidence-based bowel management protocol to promote a shared understanding based on evidence on this important matter. To succeed with prevention and treatment of constipation in critically ill patients, shared interdisciplinary understanding of what constipation is, how important prevention and treatment are, as well as systematic evidence-based recommendations on how to deal with it, are crucial.

Implementation of an evidence-based definition of constipation and an interprofessional bowel management plan based on evidence-based recommendations, may change the way nurses and physicians prioritize prevention and treatment of constipation in their daily work (Dorman et al., 2004, McKenna et al., 2001, Hansen & Severinsson, 2009). As CCNs, we must be aware of our responsibilities concerning prevention, observation, documentation, and reporting of constipation in the ICUs. Some of the included studies (Dorman et al., 2004, McKenna et al., 2001) based their findings on documentation from patients' journals and found that this kind of documentation was often incomplete or missing and represented a possible confounder. Systematic and correct documentation is crucial to patient safety

(McKenna et al., 2001, Dorman et al., 2004).

The establishment of an interprofessional understanding and plan for bowel management with guidelines for prevention and management of constipation in the ICU, will hopefully provide a more structured approach to bowel function, as well as promotion of awareness of constipation as an important issue for the critically ill patient (Lat et al., 2010; Perez-Sanchez et al., 2017). Dorman et al. (2004) concluded that a new guideline and algorithm for bowel care in the ICU involving the interprofessional team in daily discussions on ward rounds was successful. Documentation rate and quality increased when bowel management protocols were implemented and followed (McKenna et al., 2001, Dorman et al., 2004).

Evidence-based recommendations also brings along new knowledge of the severity of constipation in critically ill patients that CCNs and physicians might lack. Knowledge about the importance of rectum exploration every third day might reduce the barrier to performing the technique among nurses (McPeake et al., 2011) and thereby reduce the constipation and mortality rate in critically ill patients (de Azevedo et al., 2015, van der Spoel et al., 2007). Making constipation prevention and treatment a nurse-sensitive quality indicator might influence the status of bowel management. Nurses' preventative observational function is crucial. Most complications due to reduced gastrointestinal motility are not treated before they lead to symptoms such as constipation (Lat et al., 2010). Knowles et al. (2014) showed that initiating clinicians decision-making process in deciding to follow protocols is difficult to achieve. Despite thorough implementation nurses and physicians did not use the bowel management protocols developed. Factors such as knowledge, attitudes and beliefs can assist in targeting implementation strategies to positively affect clinician behaviour change (Knowles et al., 2015). Implementation strategies is there for crucial. Ritchie et al. (2008) measured the effect of a standardized protocol in the ICU, and after implementation the rate of constipation went down from 83% to 40%.

There are spread evidence for prophylactic use and effect of laxatives in the ICU. Hay et al. (2019) did not find support for prophylactic effect of laxatives to the critically ill patients. Osmotic laxatives are recommended for successful bowel movement (Lat et al., 2010). Early administration of macrogol as a prophylactic to critically ill patients had a better effect than its administration as a treatment for constipation; critically ill patients receiving macrogol were less likely to need other types of laxatives (Guardiola et al., 2016). Routine use of both stimulants and osmotic agents should be considered for all critically ill patients (Patanwala et al., 2006).

Based on experience, the expert group recommended macrogol due to reduced side effects compared to lactulose. Van der Spoel et al. (2007) found that lactulose and macrogol had the same effect on bowel movement as placebo and that

macrogol had a better effect on opioid-induced constipation than lactulose.

Research indicates that there is a lack of priority among nursing staff regarding bowel care (McPeake et al., 2011, Dorman et al., 2004) because constipation is a stigmatic subject that leads to a negative impact on nurses, such as feeling embarrassed in performing rectal exploration (McPeake et al., 2011). Henderson (1997) described the unique function of the nurse in assisting the individual in activities contributing to health or its recovery, or a peaceful death, and that she or he would perform them unaided if they had the necessary strength, knowledge or will.

In a high-tech medical environment, it is important to consider basic nursing as essential to positive patient outcomes. CCNs play an important role in nonpharmacological constipation prevention through abdominal massage (Dehghan et al., 2018), mobilization of the critically ill patients (Vincent and Preiser, 2015), administration of fluid and nutrition (Btaiche et al., 2010), pain prevention and treatment prevention of intensive delirium (Smonig et al., 2016). There is a need to provide high priority attention to these areas of care. To improve the clinical outcome it is essential that evidence-based nursing care strategies are implemented to reduce the errors that are avoidable (Vollman, 2013). Evidence-based nursing practice is considered useful amongst nurses in their clinical work, but they lack the knowledge on implementation in practice. Therefore it is of high importance to increase the skills and knowledge and encourage nurses in activism and professional values, and this connected with the nurses competencies can lead to nursing development (Skela-Savič et al., 2017). There is a need for a systematic approach for research that evaluates basic nursing care interventions (prevention of constipation) as well as effective relationships within the wider health-care context (Kitson et al., 2014).

Methodological limitations

The evidence-based practice methodology guided us through the process together with the AGREE II instrument (Brouwers et al., 2010). The quality of the included studies was at the lowest levels of the S-pyramid. This raises a question about the quality of the evidence informing the recommendations. The available literature regarding constipation in critically ill patients is limited and 13 of the included studies were single studies. Therefore, the interdisciplinary expert group's opinion was important. Besides being an interdisciplinary expert group designed for this study, the group represented an inter-professional platform in the ICU for interprofessional discussions. The participants articulated their experiences and skills regarding constipation prevention and treatment to improve patient treatment and care, reducing professional boundaries. Knowledge integration like this, involves discipline-specific knowledge exchange and creation of common language and knowledge for treatment and care of better quality (Godemann, 2008).

Nurses tend to rely on social interaction and experiences instead of evidence-based resources as sources of information for their clinical decision making, when they are faced with uncertainty (McCaughan et al., 2005, Estabrooks et al., 2005, Marshall et al., 2011, Thompson et al., 2008). However, in the field of knowledge utilization within nursing, there has been a significant growth (Scott et al., 2010).

We believe that a collaborative team approach will provide higher priority for prevention and treatment of constipation because both CCNs and physicians are responsible for the prevention and treatment of constipation in critically ill patients. This shared responsibility needs a shared understanding of how constipation is defined and its consequences. Inter-professional discussions on a daily basis about prevention, documentation and treatment are crucial, and evidence-based knowledge and guidelines are important guides for inter-professional discussions and plans (Hansen & Severinsson, 2009).

The discussion and consensus statements in the interdisciplinary expert group strengthen the validity and reliability of the recommendations and are themselves a resource of evidence.

CONCLUSION

Constipation in critically ill ICU patients can influence the rate of patient mortality, morbidity, and discomfort. We found that most included studies used the evidence-based definition of constipation in ICU as no bowel movement within 3 days. We believe it is of vital importance that the interprofessional ICU team agrees to, as well as document and act in accordance with the same definition and treatment plan.

We found few studies on non-pharmacological constipation prevention and treatment. Further research is needed. A structured inter-professional approach towards evidence-based prevention and treatment of constipation can influence the rate of mortality, morbidity and discomfort.

A team approach to severity, documentation and planning for prevention and treatment of constipation is crucial and may provide higher priority to constipation among CCNs and physicians. CCNs must be aware of their responsibility to prevent, observe, document and report signs of constipation to the inter-professional team. Constipation can be prevented and treated effectively.

It is important that CCNs have academic competence to understand research and undertake their own research and influence the interprofessional team. Evaluation and constantly improvement of treatment and care are essential. Prevention and treatment of constipation through nursing measures may increase the survival rate. Further research is needed on this topic.

Overall, further research on prevention and treatment of constipation in the critically ill patients is required. Few studies on non-pharmacological prevention and treatment of constipation and the involvement of CCNs were found. There is

also a need for more research on further development of inter-professional bowel management protocols, evaluation of effect and how to succeed with implementation in the professional team. An interdisciplinary team with international expert on this approach would strengthen the evidence even further.

Author Bios:

Mathilde Elsa Christensen, CCN, MSc, is a PhD candidate at the University of Agder, Faculty of Health- and Sport Sciences/University of Stavanger, Faculty of Health Sciences/Clinic A, Department of Intensive Care, Stavanger University Hospital.

Maria Ingrid Bianca Klette, CCN, MSc, works at the University of Stavanger, Faculty of Health Sciences, Clinic A, Department of Intensive Care, Stavanger University Hospital.

Britt Sætre Hansen, CCN, PhD, is a Professor at University of Stavanger and researcher at Stavanger University Hospital.

Disclosures: Declarations of interest, none.

REFERENCES

- Aikawa G, Ouchi A, Sakuramoto H, Hoshino T, Enomoto Y, Shimojo N, Inoue Y. Association of early-onset constipation and diarrhoea with patient outcomes in critically ill ventilated patients: A retrospective observational cohort study [published online ahead of print, 2022 Nov 15]. *Australian Critical Care* 2022;S1036-7314(22)00217-X. doi:10.1016/j.aucc.2022.10.005
- Arpino PA, Thompson BT. Safety of enteral naloxone for the reversal of opiate-induced constipation in the intensive care unit. *Journal of Clinical Pharmacy & Therapeutics* 2009;34(2):171-175. Retrieved from http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med6&AN=19250137
- Azevedo RP, Freitas FG, Ferreira EM, Machado FR. Intestinal constipation in intensive care units. Constipação intestinal em terapia intensiva. *Brasileira de Terapia Intensiva* 2009;21(3):324-331. <u>Intestinal constipation in intensive care units PubMed (nih.gov)</u>
- Ball JE, Murrells T, Rafferty AM, Morrow E, Griffiths P. 'Care left undone' during nursing shifts: associations with workload and perceived quality of care. *BMJ Quality and Safety* 2014:23(2);116-125. doi:10.1136/bmjqs-2012-001767
- Bishop S, Young H, Goldsmith D, Buldock D, Chin M, Bellomo R. Bowel motions in critically ill patients: a pilot observational study. *Critical Care & Resuscitation* 2010;12(3):182-185. Retrieved from http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fullt ext&D=med6&AN=21261576
- Blaser AR, Malbrain ML, Starkopf J, Fruhwald S, Jakob SM, De Waele J, Braun J, Poeze M, Spies C. Gastrointestinal function in intensive care patients: terminology, definitions and management. Recommendations of the ESICM Working Group on Abdominal Problems. Intensive Care Medicine 2012;38(3):384-394. doi:10.1007/s00134-011-2459-y
- Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, Fervers B, Graham ID, Hanna SE, Makarski J. Development of the AGREE II, part 2: assessment of validity of items and tools to support application. *Canadian Medical Association Journal* 2010;182(10):E472-478. doi:10.1503/cmaj.091716
- Btaiche IF, Chan LN, Pleva M, Kraft MD. Critical Illness, gastrointestinal complications, and medication therapy during enteral feeding in critically Ill adult patients. *Nutrition in Clinical Practice* 2010:25(1):32-49. doi:10.1177/0884533609357565 Retrieved from http://openurl.bibsys.no/openurl?sid=OVID:embase&id=pmid:20130156&id=doi:10.1177%2F0884533609357565&issn=0884-5336&isbn=&volume=25&issue=1&spage=32&pages=32-

- 49&date=2010&title=Nutrition+in+Clinical+Practice&atitle=Critical+Illness% 2C+gastrointestinal+complications%2C+and+medication+therapy+during+e nteral+feeding+in+critically+Ill+adult+patients&aulast=Btaiche&pid=%3Cauthor%3EBtaiche+I.F.%3C%2Fauthor%3E%3CAN%3E358861776%3C%2FAN%3E%3CDT%3EJournal%3A+Review%3C%2FDT%3E
- CASP. 2023. *Critical Appraisal Skills Programme Checklist* [Online]. Available: https://casp-uk.net/casp-tools-checklists/ [Accessed 06.14 2023].
- de Azevedo RP, Freitas FG, Ferreira EM, Pontes de Azevedo LC, Machado FR. Daily laxative therapy reduces organ dysfunction in mechanically ventilated patients: a phase II randomized controlled trial. *Critical Care* 2015;19(1):329. Published 2015 Sep 16. doi:10.1186/s13054-015-1047-x
- Dehghan M, Fatehi Poor A, Mehdipoor R, Ahmadinejad M. Does abdominal massage improve gastrointestinal functions of intensive care patients with an endotracheal tube?: A randomized clinical trial. *Complementary therapies in clinical practice* 2018;30:122-128. doi:10.1016/j.ctcp.2017.12.018
- Dicenso A, Bayley L, Haynes RB. Accessing pre-appraised evidence: fine-tuning the 5S model into a 6S model. *Evidence Based Nursing* 2009;12(4):99-101. doi:10.1136/ebn.12.4.99-b
- Dorman BP, Hill C, McGrath M, et al. Bowel management in the intensive care unit. *Intensive Critical Care Nursing* 2004;20(6):320-329. doi:10.1016/j.iccn.2004.09.004
- Duprey MS, Allison H, Garpestad E, RIselli AM, Faugno A, Anketell E, Devlin JW. Naloxegol to prevent constipation in icu adults receiving opioids: a randomized double-blind placebo-controlled pilot trial. *Critical Care Research and Practice* 2022;2022:7541378. Published 2022 Mar 20. doi:10.1155/2022/7541378
- Endacott R, Jones C, Bloomer MJ, Boulanger C, Nun MB, lliopoulou KK, Egerod I, Blot, S. The state of critical care nursing education in Europe: an international survey. *Intensive Care Medicine* 2015;41(12):2237-2240. doi:10.1007/s00134-015-4072-y
- Estabrooks CA, Chong H, Brigidear K, Profetto-McGrath J. Profiling Canadian nurses' preferred knowledge sources for clinical practice. *Canadian Journal of Nursing Research* 2005;37(2):118-140.
- Fukuda S, Miyauchi T, Fujita M, Oda Y, Todani M, Kawamura Y, Kaneda K, Tsuruta, R. Risk factors for late defecation and its association with the outcomes of critically ill patients: a retrospective observational study. *Journal of Intensive Care* 2016;4:33. doi:10.1186/s40560-016-0156-1
- Gacouin A, Camus C, Gros A, Isslame S., Marque S., Lavoue S, Chimot L, Donnio P, Le Tulzo Y. Constipation in long-term ventilated patients: associated factors and impact on intensive care unit outcomes. *Critical Care*

+Article%3C%2FDT%3E

Medicine 2016;4:33. Published 2016 Apr 29. doi:10.1186/s40560-016-0156-1 Retrieved from http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fullt ext&D=med6&AN=20639749

- http://openurl.bibsys.no/openurl?sid=OVID:medline&id=pmid:20639749&id=doi:1 0.1097%2FCCM.0b013e3181eb9236&issn=0090-3493&isbn=&volume=38&issue=10&spage=1933&pages=1933-8&date=2010&title=Critical+Care+Medicine&atitle=Constipation+in+long-term+ventilated+patients%3A+associated+factors+and+impact+on+intensive+care+unit+outcomes.&aulast=Gacouin&pid=%3Cauthor%3EGacouin+A%3C%2Fauthor%3E%3CAN%3E20639749%3C%2FAN%3E%3CDT%3EJournal
- Gibson CM, Pass SE. Enteral naloxone for the treatment of opioid-induced constipation in the medical intensive care unit. *Journal of Critrical Care* 2014 Oct;29(5):803-7. doi: 10.1016/j.jcrc.2014.04.005.
- Godemann J. Knowledge integration: A key challenge for transdisciplinary cooperation. *Environmental Education Research* 2008;14(6):625-641. https://doi.org/10.1080/13504620802469188
- Guardiola B, Llompart-Pou JA, Ibanez J, Raurich JM. Prophylaxis versus treatment use of laxative for paralysis of lower gastrointestinal tract in critically ill patients. *Journal of Clinical Gastroenterology* 2016;50(2):e13-18. Retrieved from http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=25811117

http://openurl.bibsys.no/openurl?sid=OVID:medline&id=pmid:25811117&id=doi:10.1097%2FMCG.0000000000000316&issn=0192-

0790&isbn=&volume=50&issue=2&spage=e13&pages=e13-

8&date=2016&title=Journal+of+Clinical+Gastroenterology&atitle=Prophylax is+Versus+Treatment+Use+of+Laxative+for+Paralysis+of+Lower+Gastrointe stinal+Tract+in+Critically+Ill+Patients.&aulast=Guardiola&pid=%3Cauthor %3EGuardiola+B%3C%2Fauthor%3E%3CAN%3E25811117%3C%2FAN%3E%3CDT%3EClinical+Study%3C%2FDT%3E

- Guerra TL, Mendonça SS, Marshall NG. Incidence of constipation in an intensive care unit. *Revista Brasileira de terapia intensiva* 2013;25(2):87-92. doi:10.5935/0103-507X.20130018
- Habeeb EA, Tran LK, Goodberlet MZ, Lupi KE, DeGrado JR, Dube KM. Naloxone versus methylnaltrexone for opioid-induced constipation in critically ill patients. *The Annals of Pharmacotherapy* 2023;57(7):762-768. doi:10.1177/10600280221132851

- Hansen BS, Severinsson E. Dissemination of research-based knowledge in an intensive care unit—A qualitative study. *Intensive & Critical Care Nursing* 2009:25(3);147-154. doi:10.1016/j.iccn.2009.02.005
- Hay T, Bellomo R, Rechnitzer T, See E, Ali Abdelhamid Y, Deane AM. 2019. Constipation, diarrhea, and prophylactic laxative bowel regimens in the critically ill: A systematic review and meta-analysis. *Journal of Critical Care* 2019:52; 242-250.10.1016/j.jcrc.2019.01.004
- Henderson V. *Basic principles of nursing care*, International Council of Nursing Press, Geneva, 1987.
- Hill S, Anderson J, Baker K, Bonson B, Gager M, Lake E. Management of constipation in the critically ill patient. *Nursing in Critical Care* 1998:3(3);134-137. Retrieved from http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=9883173
- http://openurl.bibsys.no/openurl?sid=OVID:medline&id=pmid:9883173&id=doi:&i
 ssn=1362-1017&isbn=&volume=3&issue=3&spage=134&pages=1347&date=1998&title=Nursing+in+Critical+Care&atitle=Management+of+const
 ipation+in+the+critically+ill+patient.&aulast=Hill&pid=%3Cauthor%3EHill+
 S%3C%2Fauthor%3E%3CAN%3E9883173%3C%2FAN%3E%3CDT%3EJour
 nal+Article%3C%2FDT%3E
- Kalisch BJ, Xie B. Errors of omission: Missed nursing care. Western Journal of Nursing Research 2014;36(7):875-890. doi:10.1177/0193945914531859
- Kane RL, Shamliyan TA, Mueller C, Duval S, Wilt TJ. The association of registered nurse staffing levels and patient outcomes: systematic review and meta-analysis. *Medical Care* 2007;45(12):1195-1204. doi: 10.1097/MLR.0b013e3181468ca3doi:10.1097/MLR.0b013e3181468ca3
- Kitson AL, Muntlin Athlin Å, Conroy T. Anything but basic: nursing's challenge in meeting patients' fundamental care needs. *Journal of Nursing Scholarship* 2014;46(5):331-339. doi:10.1111/jnu.12081
- Knowles S, Lam LT, Mcinnes E, Elliott D, Hardy J, Middleton S. Knowledge, attitudes, beliefs and behaviour intentions for three bowel management practices in intensive care: Effects of a targeted protocol implementation for nursing and medical staff. *BMC Nursing* 2015;14:6-6.10.1186/s12912-015-0056-z
- Knowles S, Mcinnes E, Elliott D, Hardy J, Middleton S. Evaluation of the implementation of a bowel management protocol in intensive care: effect on clinician practices and patient outcomes. *Journal of Clinical Nursing* 2014; 23:716-730. doi:10.1111/jocn.12448

- Lat I, Foster DR, Erstad B. Drug-induced acute liver failure and gastrointestinal complications. *Critical Care Medicine* 2010;38(6 Suppl):S175-S187. doi:10.1097/CCM.0b013e3181de0db2
- Marshall AP, West SH, Aitken LM. Preferred information sources for clinical decision making: critical care nurses' perceptions of information accessibility and usefulness. *Worldviews on Evidence Based Nursing* 2011;8(4):224-235. doi:10.1111/j.1741-6787.2011.00221.x
- Masri Y, Abubaker J, Ahmed R. Prophylactic use of laxative for constipation in critically ill patients. *Annals of Thoracic Medicine* 2010;5(4):228-231. doi:10.4103/1817-1737.69113
- McCaughan D, Thompson C, Cullum N, Sheldon T, Raynor P. Nurse practitioner and practice nurses' use of research information in clinical decision making: findings from an exploratory study. *Family Practice* 2005;22(5):490-497. doi:10.1093/fampra/cmi042
- McKenna S, Wallis M, Brannelly A, Cawood J. The nursing management of diarrhoea and constipation before and after the implementation of a bowel management protocol. *Journal of Australian Critical Care* 2001;14(1):10-6. doi: 10.1016/s1036-7314(01)80017-5.
- McPeake J, Gilmour H, MacIntosh G. The implementation of a bowel management protocol in an adult intensive care unit. *Nursing in Critical Care* 2011;16(5):235-242. doi:10.1111/j.1478-5153.2011.00451.x
- Merchan C, Altshuler D, Papadopoulos J. Methylnaltrexone Versus Naloxone for Opioid-Induced Constipation in the Medical Intensive Care Unit. *Annals of Pharmacotherapy* 2017;51(3):203-208. doi:10.1177/1060028016677310
- Mostafa SM, Bhandari S, Ritchie G, Gratton N, Wenstone R. Constipation and its implications in the critically ill patient. *British Journal of Anaesthesia* 2003;91(6):815-819. doi:10.1093/bja/aeg275
- Nassar AP Jr, da Silva FM, de Cleva R. Constipation in intensive care unit: incidence and risk factors. *Journal Of Critical Care* 2009;24(4):630.e9-630.e6.3E12. doi:10.1016/j.jcrc.2009.03.007
- Patanwala AE, Abarca J, Huckleberry Y, Erstad BL. 2006. Pharmacologic Management of Constipation in the Critically Ill Patient. *Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy* 2006:26;896-902.https://doi.org/10.1592/phco.26.7.896
- Patel PB, Brett SJ, O'Callaghan D, Anjum A, Cross M, Warwick J, Gordon AC. Methylnaltrexone for the treatment of opioid-induced constipation and gastrointestinal stasis in intensive care patients. Results from the MOTION trial. *Intensive Care Medicine* 2020;46(4):747-755. doi:10.1007/s00134-019-05913-6

- Pérez-Sánchez J, Fernández-Boronat J, Martínez-Méndez E, Marin-Cagigas ML, Mota-Puerto D, Perez-Roman MC, Martinez-Estalella G. Evaluation and handling of constipation in critical patients. Evaluación y abordaje del estreñimiento en el paciente crítico. *Enferm Intensiva* 2017;28(4):160-168. oi:10.1016/j.enfi.2017.01.001
- Prat D, Messika J, Avenel A, Jacobs F, Fichet J, Lemeur M, Ricard J, Sztrymf B. Constipation incidence and impact in medical critical care patients: importance of the definition criterion. *European Journal of Gastroenterology & Hepatology* 2016;28(3):290-296. doi:10.1097/MEG.00000000000000543
- Ring M. Implementation of a bowel care protocol within intensive care. *Connect: The World of Critical Care Nursing* 2011;8:17-20.1 DOI:10.1891/1748-6254.8.1.17
- Ritchie G, Burgess L, Mostafa S, Wenstone, R. 2008. Preventing constipation in critically ill patients. *Nursing Times* 2008:104;42-44. <u>Preventing constipation in critically ill patients PubMed (nih.gov)</u>
- Sawh SB, Selvaraj IP, Danga A, Cotton AL, Moss J, Patel PB. Use of methylnaltrexone for the treatment of opioid-induced constipation in critical care patients. *Mayo Clinic Proceedings* 2012;87(3):255-259. doi:10.1016/j.mayocp.2011.11.014
- Scott SD, Profetto-McGrath J, Estabrooks CA, Winther C, Wallin L, Lavis JN. Mapping the knowledge utilization field in nursing from 1945 to 2004: a bibliometric analysis. *Worldviews Evidence Based Nursing* 2010;7(4):226-237. doi:10.1111/j.1741-6787.2010.00197.x
- Smonig R, Wallenhorst T, Bouju P, Letheulle J, Le Tulzo Y, Tadie JM, Gacouin A. Constipation is independently associated with delirium in critically ill ventilated patients. *Intensive Care Medicine* 2016;42(1):126-127. doi:10.1007/s00134-015-4050-4
- Thompson DR, Watson R, Quinn T, Worrall-Carter L, O'Connell B. Practice development: what is it and why should we be doing it?. *Nurse Education in Practice* 2008;8(4):221-222. doi:10.1016/j.nepr.2008.04.001
- van der Spoel JI, Schultz MJ, van der Voort PH, de Jonge E. Influence of severity of illness, medication and selective decontamination on defecation. *Intensive Care Med.* 2006;32(6):875-880. doi:10.1007/s00134-006-0175-9
- van der Spoel JI, Oudemans-van Straaten HM, Kuiper MA, van Roon EN, Zandstra DF, van der Voort PH. Laxation of critically ill patients with lactulose or polyethylene glycol: a two-center randomized, double-blind, placebocontrolled trial. *Critical Care Medicine* 2007;35(12):2726-2731. doi:10.1097/01.CCM.0000287526.08794.29
- Vincent JL, Preiser JC. Getting critical about constipation. *Practical Gastro*, 2015;144:14-25. Getting Critical About Constipation Practical Gastro

Vollman KM. Interventional patient hygiene: Discussion of the issues and a proposed model for implementation of the nursing care basics. *Intensive and Critical Care Nursing* 2013;29(5):250-255. doi:10.1016/j.iccn.2013.04.004

Wanik J, Teevan C, Pepin L, Andrews L, Dalessio L, Feda J, Kevorkian NM, Weintraub S. Implementation of a bowel protocol to improve enteral nutrition and reduce clostridium difficile testing. *Critical Care Nurse*. 2019;39(6):e10-e18. doi:10.4037/ccn2019304

Appendix 1.Summary Table for Articles Targeting the Prevention and Treatment of Constipation in the Critically Ill

		M	ethods		Results				
Author /Year	Study design	Sample size	Intervention	Comments/ Risk of bias	Findings	Conclusion	Relevance/ transferability		
Arpino, 2009. USA	Cohort	n= 24 Critical care patients. Cohort of patients who received at least one dosage of naloxone.	Enteral naloxone administrated in various dose from 0.9-3.6 mg	Small sample. Poor documentation of the range of bowel movements. No control group. The intervention group was compared to baseline measurements. No use of confidence intervals.	They measured how naloxone affected RASS, vital parameters, and the amounts of opioids and sedatives administrated. They measured total number of bowel movements before and after naloxone.	Naloxone enterally was not associated with change of RASS level, vital parameters, nor fentanyl, midazolam or propofol dosages. More patients had bowel movement in the intervention group compared to baseline, (26% vs 11%).	Providers may consider naloxone enterally for constipated critical care patients.		

Azevedo,	RCT	n= 88	Investigate if	The two groups were	The patients in the	Daily defecation	Daily bowel
2015.		Adult	daily defecation	comparable.	intervention group	led to significant	movement is
England		mechanically	with lactulose	Results included p-	had more frequent	reduction in SOFA	associated with
		ventilated	had an impact	values and confidence	bowel movements	scores.	improved SOFA
		patients, both	on SOFA scores	interval.	than the control	The results of this	scores.
		surgical and	(Sequential		group.	study pointed in	However,
		medical.	Organ Failure			direction (p-value	caution is
		44=	Assessment			0,08) of lower	required as the
		intervention	Scores).			morbidity with	intervention
		group				daily defecation.	group also had
		44= control					longer lengths of
		group					stay and more
							frequent cases of
							pneumonia than
							the control
							group.
Bishop,	Cohort	n= 44	Investigate	Patients received	Constipation rates	Lactulose and	This study
2010.	pilot	Critical care	bowel function	lactulose until first	were common.	ondansetron were	revealed that
Australia	study	patients were	and patterns of	defecation.	Laxatives were	significant in effect	there is a high
		observed for	defecation in		effective.	of defecation.	incidence of
		274 days on	critically ill		Opioids were	Lactulose had a	constipation in
		mechanical	mechanical		associated with lower	significant	the ICU.
		ventilation.	ventilated		frequency of bowel	relationship with	Lactulose is
			patients.		movement.	stool volume.	effective in the
							prevention or
							treatment
							constipation.

Btaiche,	Review	Search	Investigate	This paper presents	Review over how	Early and	A higher volume
2010		history is	critical illness,	existing evidence for	medication and	adequate enteral	of aspirate (500
		described and	gastrointestinal	naloxone, methyl	enteral nutrition	nutrition are	ml) leads to a
		documented.	complications	naltrexone and	effects the	important for	higher frequency
			and medication	alvimopan to restore	gastrointestinal tract.	critical care	of patients being
			administrated	bowel function.		patients.	fed enterally.
			while enteral			Constipation can	In the national
			nutrition was			be prevented	guideline for
			given to the			through different	nutrition, the
			critical care			strategies, such as	aspirate level is
			patients.			adequate fluid	set to 300 ml.
						balance, opioid	
						antagonists, and	
						laxatives.	
Dehgan,	RCT	N=70.	In the	Small sample size	There was a lower	Abdominal	Non-
2018,		35 patients in	intervention		number of	massage decreases	pharmacological
Iran		the	group the		constipated patients	the time to the first	measures to
		intervention	patients		in the intervention	bowel movement.	prevent
		group and 35	received		group (37%) versus		constipation in
		in the control	abdominal		the control group		the critically ill
		group	massage for 15		(68%).		patients are
			minutes twice a				effective.
			day, for 3 days.				
			The control				
			group received				
			basic nursing,				

Dorman,	Cohort	n= 9 pre-	Implementa-	Older study with a	This study focuses on	The	The audit
2004,	study	intervention	tion of a bowel	small sample.	bowel and bowel	implementation of	identified
England		n= 10 post-	movement	Confidence intervals	function.	the bowel	constipation as a
		intervention	protocol.	are not presented.	The health care	movement	problem.
					professional had	protocol led to	Their bowel
					improved	focus on bowel	movement
					documentation after	care as a daily	protocol will be
					protocol	routine.	relevant for this
					implementation. They		study.
					also started laxatives		
					earlier than before the		
					intervention.		
					Laxatives were		
					started coordinately		
					with enteral nutrition.		
Gibson,	Cohort	n= 16	Measure safety	Study period was 5	The average daily	Naloxone	Administrating
2014,	study	Adult male	and	years – and only 16	dose of naloxone was	administration is	enterally
USA		patients in	effectiveness of	male patients. No	4.7 mg.	associated with	naloxone can
		MICU	enteral	control for historical	15 of 16 had bowel	bowel movements.	prevent and help
			naloxone for	changes in practice.	movement within 24		the patients to
			opioid-induced	Individual doses of	hours after		defecate.
			constipation in	naloxone were given.	administration.		
			a medical ICU.	75% received other			
				additional laxatives.			
				No documentation of			
				level of sedation.			

Guardio-	Case	N=197	Measure the	In the observational	90% in the	PEG4000 gives	Presents a new
la, 2016,	control	Adult critical	prevalence of	phase, the occurrence	observational group	best outcome for	type of
Spain	study	care patients	lower gastro-	of GI-paralysis was	had GI paralysis.	critically ill	definition of
1		63=	intestinal tract	documented.	In the treatment	patients if it is	constipation.
		observational	paralysis (GI-	In the treatment-	group 25% had GI -	administrated on	Beside 3 days
		phase	paralysis).	phase they were given	paralysis, and in the	day 1.	without bowel
		64= treatment	Compare	treatment starting on	prophylactic group		movements,
		phase	laxative	day 4.	8,6% had GI-		dilatation of the
		70=	treatments and	In the prophylactic-	paralysis.		colon and
		prophylactic	prophylactic	phase they got	There was a shorter		presence and
		phase	measures, for	prophylactic	length of stay and		frequency of
			stimulating	treatment from day 1.	shorter length on		bowel sounds
			defecation.	The patients got	ventilator for the		should be
				administrated PEG	prophylactic group.		measured.
				4000 (polyethylene			
				glycol [macrogol])			
				every 6 hours until			
				defecation occurred. If			
				no defecation within 5			
				days they got			
				administrated an			
				enema (1 liter of			
				paraffin, glycerin, and			
				sodium phosphate)			
				and/or neostigmine in			
				24 hours. If still no			
				defecation, the			
				patients received			
				high-dose PEG over			
				12 hours by feeding			
				tube.			

Hay,	Syste-	Limited to	To review if	Studies included in	Prophylactic laxative	Low data about	None.
2019,	matic	critical care	prophylactic	the review had low	bowel regimen	prophylactic	
Australia	review		laxative bowel	evidence level, and	increases the risk of	laxative bowel	
			regimen	few studies to	diarrhea and did not	regimen and do	
			prevent	compare.	reduce the risk of	not support their	
			constipation		constipation.	use	
Knowles,	Case	N= 101	Measure if a	Evidence based	No significant	Nurses and	Usefulness of
2014,	control	preimple-	bowel	protocols were	findings in cases of	doctors did not use	the protocols
Australia	study	mentation	movement	developed for	constipation before	the protocols,	developed.
		group	protocol had	preventing	and after the	regardless of	Barriers in
		N= 107	effect	constipation, rectal	intervention	thorough	implementation
		postimple-		exploration and		implementation n	of change.
		mentation		treatment of		the ward.	
		group		constipation and			
				diarrhea			
Lat,	Review	Search	Medicine	Relevant because they	Stimulant agents and	Regarding to this	Presents existing
2010,		strategy was	induced acute	present a section on	osmotic agents have	review article	evidence for
USA		not	hepatitis and	constipation in	effect on constipation	stimulant and	laxatives and
		documented.	gastrointestinal	critically ill patients	in critically ill	osmotic agents	opioid
			complications		patients.	have a positive	antagonists
			in the ICU.		Methylnaltrexone	impact on	
					abbreviated time to	constipation.	
					first bowel movement	Metylnaltrexone	
					for patients with	and alvimopan	
					opioid induced	decreased the time	
					constipation	to the first bowel	
						movement.	

Masri, 2010, United Arab Emirates	RCT	N=100 Control group= 50 Intervention group= 50 Adult mechanical ventilated patients, mostly males	Early versus late defecation in context with patient outcome. Evaluate use of laxative in prophylaxis of constipation in critical ill patients.	Intervention group got administrated lactulose 20 ml x 2 the first three days (started within 4-6 hours after admission to the ICU). Control group received no laxatives the first three days. After three days treatment was cared for individually by doctor's order. They measured severity of constipation after 5 days.	In the intervention group 18% had bowel movement within 76 hours. In the control group 4% had bowel movement within 76 hours Early bowel movement within 5 days gave shorter time on ventilator versus late bowel movement.	Lactulose can prevent constipation	Gives evidence for use of lactulose to prevent constipation in the ICU.
McKenna , 2001, Australia	Case control study	N= 120 60= pre intervention. group 60= post intervention group. Critically ill patients, 75 men and 45 women.	Nurse led bowel movement protocol were developed based on a review of literature. They measured frequency of constipation and diarrhea before and after implementing the protocol.	Constipation was defined as 3 days with no bowel movement. First measure after 3 days by rectal exploration.	Implementation of bowel movement protocol led to better documentation and evaluation of bowel function by the nurses.	Bowel movement protocol can be a helpful tool for critical care nurses and can increase and improve both documentation and evaluation of bowel movement in the ICU.	The results are based on the documentation of bowel activity. They are dependent on the documentation being done sufficiently. Uncertainty if the protocol had the desired effect.

McPeake,	Case	Total N= 55.	Measure effect	No measure of	After implementation	Occurrence of	This study gives
2011,	control	26=	of	continued or	of the protocol the	constipation and	evidence for use
Scotland	study	intervention	implementation	sustained use at 6-	occurrence of	diarrhea can	of protocol in
		group	of a bowel	month.	constipation was	improve by	preventing and
		27= control	movement		reduced to 37% from	education of health	treatment of
		group	protocol.		58%.	care professionals	constipation
					Diarrhea was reduced	and with use of	
					by 15% (from 20% to 5	bowel movement	
					%). Days of	protocol.	
					documentation of		
					bowel movement rose		
					to 100%.		
Merchan,	Cohort.	Sample	Measure how	Patients were given	Time before first	Methylnaltrexone	Strengthens the
2017,	Pilot	N=100.	long before first	from 0 to 4 different	bowel movement	and naloxegol was	use of opioid
USA	study	Methylnaltre	bowel	laxatives additionally	were 30 hours for the	both effective for	antagonists for
	with	xone: 48	movement after	to the survey	naloxegol group vs 24	the bowel	bowel
	retrosp	Naloxegol: 52	72 hours with	medicine.	hours for the	movement to	movement in
	ective		fentanyl		methylnaltrexone	occurrence.	ICU patients.
	design.		infusion,		group.		
			followed by the		None of the groups		
			number of		had a change in		
			bowel		sedation niveau,		
			movements		dosage of opioids or		
			within 24		vital parameters.		
			hours.				

Patanwa-	Case	N=50	Compare effect	Few participants.	Stimulant (senna) was	Routine use of	Routine use of
la, 2006,	control	25= group	of regular	Some received more	associated with bowel	stimulant and	stimulant and
USA	study	who had	laxatives in a	laxatives than others.	movement.	osmotic agents	osmotic agents
		bowel	medical ICU	Dependent on	Stool softeners can	should be	should be
		movement		sufficient	have impaired effect	considered for all	considered for
		within 96		documentation of	on constipation	critical care	all critical care
		hours		bowel function when	because of reduced	patients.	patients.
		25= group		results audited by	gastrointestinal	•	•
		who did not		audit.	motility.		
		have bowel			Bisacodyl (toilax) had		
		movement			a trend towards being		
		within 96			significant in effect.		
		hours			Opioids increases risk		
					of constipation.		
					Use of vasopressin		
					gives increased		
					number of		
					constipated patients.		
					Critically ill patients		
					have high incidence		
					of constipation.		
					Main side effect from		
					laxatives includes		
					abdominal cramps.		
Ritchie,	Cohort	N= 48	Audit the effect	Follow up study after	The rate of	Constipation was	Protocol use
2008,	study	Critical care	of bowel	Mostafa revealed that	constipation was 40%	still a problem, but	decreased the
England	study	patients	movement	the constipation	after implementing	less patients	impact of
Lingiana		Patients	protocol over	incidence was 83%	the bowel movement	suffered from it	constipation.
			12 months	metacrice was 00/0	protocol	after implementing	consupation.
			12 111011(113		Protocoi	the protocol.	
						the protocor.	

Ring, 2011, Australia	Cohort study	N= 16 7= Baseline 9= Post implementati on	Investigate if a bowel movement protocol could reduce number of days before first bowel movement in the ICU. All patients got prune juice. At day 3 macrogol was administrated. The patients received enemas if rectum ampulla was full when rectum exploration was	Search of literature is not described. The bowel movement protocol is based on 5 articles and experiences from a multidisciplinary group	Time before first bowel movement went down from 9 to 5,3 days	Use of the protocol can help shorten the time to first bowel movement for critical care patients.	This study shows how important focus on bowel function is.

Sawh,	Case	N= 15	Investigate the	Patients treated with	6 of 7 in the	Methylnaltrexone	Methylnaltrex-
2012,	control	Critical care	effect of	senna/docusate in 72	methylnaltrexone	has significant	one is a
England	study	patients.	methylnaltrexo	hours. Thereafter the	group had bowel	better effect on	consideration for
		All treated	ne versus	groups received either	movement within 24	opioid induced	preventing
		with sodium	conventional	methylnaltrexone or	hours. Of the sodium	constipation	constipation in
		docusate and	laxatives on	sodium picosulfate	picosulfate/glycerol		the hose on
		senna the first	opioid induced	and glycerol	supp group none of		opioid
		72 hours.	constipation on	suppository.	the participants had		medications.
		7=	the critically ill		bowel movement		
		Methylnaltre	patients		The methylnaltrexone		
		xone bromide			group was fully		
		8= Sodium			enterally fed and had		
		picosulfate			smaller residual		
		glycerin			volumes than the		
		suppository			other group.		

Van der	RCT	N= 308	Compare effect	Pharmacists mixed	Lactulose and PEG	Both PEG and	Study suggest
Spoel,		Adult critical	of PEG,	study medicine which	had the same effect on	lactulose was	PEG to prevent
2007,		care patients	lactulose, and	were mixed in alike	stimulate bowel	effective on	constipation.
Netherla		from 2	placebo. And if	bottles containing 100	movement versus	stimulation of	_
nds		hospitals	any of the three	ml sterile water and	placebo. PEG had	bowel movement.	
			was better in	medicine/placebo.	slightly better effect		
			stimulating to	The study was	on opioid induced		
			bowel	blinded.	constipation.		
			movement and		Lactulose was		
			improving		associated with		
			outcomes.		shorter length of stay.		
					If defecation did not		
					occur within 3 days,		
					neostigmine was most		
					effective. Defecation		
					within 6 days was		
					related to a shorter		
					stay in the ICU,		
					regardless of use of		
					laxatives		
Habeeb,	Retrosp	N= 160	Compare	The two groups are	Time to first bowel	Time to first bowel	Supports use of
E et al,	ective	Patients from	naloxone	not equal, more	movements was	movement was	naloxone.
2022,	cohorts	2015-2020	enterally given	medical ICU patients	shorter in the	shorter in the	
USA	tudy		vs	in one of the groups.	naloxone group.	naloxone group 18	
			methylnaltrex-			hours vs 41 hours	
			one.			for	
						methylnaltrexone.	

Duprey, M et al, 2022, USA	A Rando mized Double -Blind Placebo - Control led Pilot Trial	N= 12	Measure effectiveness of naloxone versus methylnaltrexo ne.	Small sample	Time to first bowel movements was the same compare naloxone vs placebo.	The findings in this study do not give evidence because of small size sample	N/A
Patel, et al, 2020, USA	RCT	N= 84	Methylnaltrexo ne vs placebo, measure rescue-free laxation (hours), to first bowel movement.	Wild confidence intervals. A clinically important difference cannot be excluded.	The was no difference in time to rescue-free laxation (hours), compared methylnaltrexone and placebo.	No evidence to support methylnaltrexone compared to conventional laxative.	
Azevedo, 2015. England	RCT	n= 88 Adult mechanically ventilated patients, both surgical and medical. 44= intervention group 44= control group	Investigate if daily defecation with lactulose had impact on the SOFA score (Sequential Organ Failure Assessment score)	The two groups are alike and comparable. The p-values and confidence interval are presented.	The patients in the intervention group had more frequent bowel movements than the control group	Daily defecation led to significant reduction in SOFA score. The results of this study pointed in direction (p-value 0,08) of lower mortality were daily defecation occurred.	Daily bowel movement is proven to give better outcomes in SOFA score regarding this study, but the intervention group had longer length of stay and more frequent cases of pneumonia than the control group

Bishop,	Cohort	n= 44	Investigate	Patients received	Constipation was	Lactulose and	This study
2010.	study –	Critical care	bowel function	lactulose until first	common.	ondansetron were	revealed that
Australia	pilot	patients were	and patterns of	defecation	Laxatives given had	significant in effect	there is a high
	observa	observed for	defecation in		effect and opioids	of defecation.	incidence of
	tional	274 days on	critically ill		given was associated	Lactulose had a	constipation in
		mechanical	mechanical		with lower frequency	significant	the ICU. It gives
		ventilation	ventilated		of bowel movement.	relationship with	evidence for
			patients.			stool volume .	lactulose to
							prevent or treat
							constipation
Btaiche,	Review	Search	Investigate	This paper presents	Review over how	Early and	According to
2010		history is	critical illness,	existing evidence for	medication and	adequate enteral	this study
		described and	gastrointestinal	naloxone,	enteral nutrition	nutrition are	acceptance of a
		documented	complications	methylnaltrexone and	effects the	important for	higher volume
		for	and medication	alvimopan.	gastrointestinal tract	critical care	of aspirat (500
			administrated			patients.	ml) could be
			while enteral			Constipation can	relevant for our
			nutrition was			be prevented	guideline
			given to the			through different	leading to higher
			critical care			strategies, such as	frequens of
			patients.			adequate fluid	patients being
						balance, opioid	fed enterally.
						antagonists, and	In the national
						laxatives.	guideline for
							nutrition, the
							aspirat level is
							set to 300 ml.

Dehghan, 2018, Iran	RCT	70 35 patients in the intervention group and 35 in the control group	In the intervention group the patients received abdominal massage for 15 minutes twice a day, for 3 days. The control group did only receive basic nursing,	Low number of patients included	It was lower number of constipated patients in the intervention group vs the control group 37% vs 68%	Abdominal massage does decrease the time for first bowel movement.	Non-pharmacological measure to prevent constipation in the critically ill patients.
Dorman, 2004, England	Cohort	n= 9 pre- intervention n= 10 post- intervention	Implementation of bowel movement protocol	Old study. The ward inspected had an unstructured approach to constipation. They wanted a change. Confidence intervals are not presented.	This study focuses on bowel and bowel function. Health care professional documentation improved after implementation. They also started laxatives earlier than before the intervention. Laxatives were started concurrently with enteral nutrition.	The implementation of the bowel movement protocol led to focus on bowel care as a daily routine	This study presents same issues that we had in our ward. The audit identified constipation as a problem. Their bowel movement protocol will be relevant for this study
Gibson, 2014, USA	Cohort study	n= 16 Adult male patients in MICU	Measure safety and effectiveness of enteral naloxone for opioid-induced constipation in a medical ICU	16 males included over 5 years. Individual doses of naloxone were given. 75% received other laxatives additionally. No documentation of level of sedation	Average daily dose of naloxone was 4.7 mg. 15 of 16 had bowel movement within 24 hours after administration.	Naloxone gives bowel movement	Administrating enterally naloxone can prevent and help the patients to defecate.

Guardio-	Case	N=197	Measure the	In the observational	90% in the	PEG4000 gives	Presents a new
la, 2016,	control	Adult critical	prevalence of	phase, the occurrence	observational group	best outcome for	type of
Spain	study	care patients	lower gastro-	of GI-paralysis.	had GI paralysis.	critically ill	definition of
1		63=	intestinal tract	In the treatment-	In the treatment	patients if it is	constipation.
		observational	paralysis (GI-	phase they were given	group 25% had GI -	administrated on	Beside 3 days
		phase	paralysis).	treatment from day 4.	paralysis, and in the	day 1.	without bowel
		64= treatment	Compare	In the prophylactic-	prophylactic group		movements,
		phase	laxative	phase they got	8,6% had GI-		dilatation of the
		70=	treatments and	prophylactic	paralysis.		colon and
		prophylactic	prophylactic	treatment from day 1.	There was shorter		presence and
		phase	measures, for	The patients got	length of stay and		frequency of
		1	stimulating	administrated PEG	shorter length on		bowel sounds
			defecation	4000 (polyethylene	ventilator for the		should be
				glycol [macrogol])	prophylactic group.		measured
				every 6 hours until			
				defecation occurred. If			
				no defecation within 5			
				days they got			
				administrated an			
				enema (1 liter of			
				paraffin, glycerin, and			
				sodium phosphate			
				and/or neostigmine in			
				24 hours. If still no			
				defecation the			
				patients received			
				high-doses of PEG			
				over 12 hours by			
				feeding tube			
Hay,	System	The search	To review if	Studies included I the	Prophylactic laxative	Low data about	
2019,	atic	Included	prophylactic	SR have low evidence	bowel regimen	prophylactic	
Australia	review	patients how	laxative bowel	level and its few	increases the risk of	laxative bowel	
		was in critical	regimen	studies to compare	diarrhea and did not	regimen and do	
		care	prevent		reduce the risk of	not support their	
			constipation		constipation	use	

Knowles,	Cas	N= 101 pre-	Measure if a	Evidence based	No significant	Nurses and	Effective
2014,	control	implement-	bowel	protocols were	findings in cases of	doctors did not use	evidenced based
Australia	study	ation group	movement	developed for	constipation before	the protocols,	protocols
		N= 107	protocol had	preventing	and after the	regardless of	despite poor
		postimpleme	effect	constipation, rectal	intervention	thorough	adoption.
		ntation group		exploration and		implementation n	-
				treatment of		the ward	
				constipation and			
				diarrhea.			
Lat,	Review	Search	Approach	Relevant because they	Stimulant agents and	Regarding to this	Presents
2010,		strategy is not	medicine	present a chapter	osmotic agents have	review article	evidence for
USA		documented	induced acute	about constipation in	effect on constipation	Stimulant and	laxatives and
			hepatitis and	critically ill patients.	in critically ill	osmotic agents	opioid
			gastrointestinal		patients.	have good effect	antagonists.
			complications		Methylnaltrexone	on constipation.	
			in the ICU		abbreviated time to	Methylnaltrexone	
					first bowel movement	and alvimopan	
					for patients with	abbreviated time	
					opioid induced	for first bowel	
					constipation	movement.	

Masri,	RCT	N=100	Early versus	Intervention group	In the intervention	Lactulose can	Gives evidence
2010,		Control	late defecation	got administrated	group 18% had bowel	prevent	for use of
United		group= 50	in context with	lactulose 20 ml x 2 the	movement within 76	constipation.	lactulose to
Arab		Intervention	patient	first three days	hours.	1	prevent
Emirates		group= 50	outcome.	(started within 4-6	In the control group		constipation in
		Adult	Evaluate use of	hours after admission	4% had bowel		the ICU.
		mechanical	laxative in	to the ICU).	movement within 76		
		ventilated	prophylaxis of	Control group	hours.		
		patients,	constipation in	received no laxatives	Early bowel		
		mostly males	critical ill	the first three days.	movement within 5		
		,	patients.	After three days	days gave shorter		
			1	treatment was cared	time on ventilator		
				for individually by	versus late bowel		
				doctor's order.	movement.		
				They measured			
				severity of			
				constipation after 5			
				days.			
McKen-	Case	N= 120	Nurse led	Constipation was	Implementation of	Bowel movement	The results are
na, 2001,	control		bowel	defined as 3 days with	bowel movement	protocol can be a	based on the
Australia	study	60= pre	movement	no bowel movement.	protocol led to better	helpful tool for	documentation
		intervention	protocol were	First measure after 3	documentation and	critical care nurses,	of bowel
		group	developed	days was rectal	evaluation of bowel	and can increase	activity. They
		60= post	based on a	exploration	function by the	and improve both	are dependent
		intervention	review of		nurses.	documentation	on the
		group	literature They			and evaluation of	documentation
		Critically ill	measured			bowel movement	being done
		patients, 75	frequency of			in the ICU	sufficiently.
		men and 45	constipation				Uncertainty if
		women	and diarrhea				the protocol had
			before and after				wanted effect.
			implementing				
			the protocol				

McPeake,	Case	N= 55	Measure effect	Would be of relevance	After implementation	Occurrence of	This study gives
2011,	control		of	to have a measure	of the protocol the	constipation and	evidence for use
Scotland	study	26=	implementation	after 6 months to see	occurrence of	diarrhea can	of protocol in
		intervention	of a bowel	if the protocol is used	constipation was	improve by	preventing and
		group	movement		reduced to 37% from	education of health	treatment of
		27= control	protocol		57,7%. Diarrhea was	care professionals	constipation
		group			reduced with 15%	and with use of	
					from 20% to 5 %.	bowel movement	
					Days of	protocol	
					documentation of		
					bowel movement rose		
					to 100%		
Merchan,	Cohort.	N=100	Measure how	Patients were given	Time before first	Methylnaltrexone	Strengthens the
2017,	Pilot	Methylnaltre	long before first	from 0 to 4 different	bowel movement	and naloxegol was	use of opioid
USA	study	xone: 48	bowel	laxatives additionally	were 30 hours for the	both effective for	antagonists for
	with	Naloxegol: 52	movement after	to the survey	naloxegol group vs 24	stimulating bowel	bowel
	retro-		72 hours with	medicine	hours for the	movement.	movement in
	spect-		fentanyl		methylnaltrexone		ICU patients.
	ive		infusion.		group. None of the		
	design		Thereafter		groups had a change		
			measure how		in sedation niveau,		
			many bowel		dosage of opioids or		
			movements		vital parameters.		
			within 24 hours				

Patanwa-	Case	N=50	Compare effect	Few participants.	Stimulant (senna) was	Routine use of	This study
la, 2006,	control		of regular	Some received more	associated with bowel	stimulant and	shows effect
USA	study	25= group	laxatives in a	laxatives than others.	movement.	osmotic agents	estimates
		who had	medical ICU	Dependent on	Stool softeners can	should be	relevant for our
		bowel		sufficient	have impaired effect	considered for all	protocol
		movement		documentation of	on constipation	critical care	
		within 96		bowel function when	because of reduced	patients	
		hours		results are withdrawn	gastrointestinal		
		25= group		by audit	motility.		
		who did not			Bisocardyl (toilax)		
		have bowel			had a trend towards		
		movement			being significant in		
		within 96			effect.		
		hours			Opioids increases risk		
					of constipation. Use of		
					vasopressin gives		
					increased number of		
					constipated patients.		
					Critically ill patients		
					have high incidence		
					of constipation.		
					Main side effect from		
					laxatives is abdominal		
					cramps.		
Ritchie,	Cohort	N= 48	Audit the effect	Follow up study after	The rate of	Constipation was	Protocol is of
2008,	study	Critical care	of bowel	Mostafa revealed that	constipation was 40%	still a problem, but	relevance for
England	Juay	patients	movement	the constipation	after implementing	less patients	this study
		r	protocol over	incidence was 83%	the bowel movement	suffered from it	
			12 months		protocol	after implementing	
					Г	the protocol	

Ring,	Cohort	N= 16	Investigate if a	Search of literature is	Time before first	Protocol can help	This study
2011,	study		bowel	not described.	bowel movement	shorten the time to	shows how
Australia		7= Baseline	movement	The bowel movement	went down from 9 to	first bowel	important focus
		9= Post	protocol could	protocol is based on 5	5,3 days	movement for	on bowel
		implementati	reduce number	articles and	-	critical care	function is.
		on	of days before	experiences from a		patients	Together with
			first bowel	multidisciplinary			other studies it
			movement in	group.			has a value for
			the ICU.				our study
			All patients got				
			prune juice.				
			At day 3				
			macrogol was				
			administrated.				
			The patients				
			received				
			enemas if				
			rectum ampulla				
			was full when				
			rectum				
			exploration was				
			performed on				
			day 7.				

Sawh,	Case	N= 15	Investigate the	Patients treated with	6 of 7 in the	Methylnaltrexone	Methylnaltrexon
2012,	control	Critical care	effect of	senna/docusate in 72	methylnaltrexone	has significant	e can possibly be
England	study	patients.	methylnaltrexo	hours. Thereafter the	group had bowel	better effect on	a part of the
		All treated	ne versus	groups received either	movement within 24	opioid induced	protocol
		with sodium	conventional	methylnaltrexone or	hours. Of the sodium	constipation	
		docusate and	laxatives on	sodium picosulphate	picosulphate/glycerol		
		senna the first	opioid induced	and glycerol supp	supp group none of		
		72 hours.	constipation on		the participants had		
		7=	the critically ill		bowel movement		
		Methylnaltre	patients		The methylnaltrexone		
		xone			group was fully		
		8= Sodium			enterally fed and had		
		picosulfate			smaller residual		
		glycerin			volumes than the		
		suppository			other group.		
van der	RCT	N= 308	Compare effect	Pharmacists mixed	Lactulose and PEG	Both PEG and	Study suggest
Spoel,		Adult critical	of PEG,	study medicine which	had the same effect on	lactulose was	PEG to prevent
2007,		care patients	lactulose and	were mixed in alike	stimulate bowel	effective on	constipation.
Nether-		from 2	placebo on	bottles containing 100	movement versus	stimulation of	
lands		hospitals	stimulating a	ml sterile water and	placebo.	bowel movement.	
			bowel	medicine/placebo.	PEG had slightly		
			movement	The study was	better effect on opioid		
			along with	blinded.	induced constipation.		
			patient		Lactulose was		
			outcomes.		associated with		
					shorter length of stay.		
					If defecation did not		
					occur within 3 days,		
					neostigmine was most		
					effective. Defecation		
					within 6 days was		
					connected with		
					shorter stay in the		
					ICU, regardless of use		
					of laxatives		

Habeeb,	Retro-	N= 160	Compare	The two groups are	Time to first bowel	Time to first bowel
et al,	spect-	Patients from	naloxone	not equal, more	movements was	movement was
2022,	ive	2015-2020	enterally given	medical ICU patients	shorter in the	shorter in the
USA	cohort		vs	in one of the groups.	naloxone group.	naloxone group 18
	study		methylnaltrexo			hours vs 41 hours
			ne			for
						methylnaltrexone
Duprey,	A	N= 12	Measure	Small population of	Time to first bowel	The findings in
M et al,	Rando		effectiveness of	patients, the result is	movements was the	this study do not
2022,	mized		naloxone	difficult to compare to	same compare	give evidence
USA	Double		versus	other studies.	naloxegol vs placebo.	because of small
	-Blind		methylnaltrex-			size sample.
	Placebo		one			
	-					
	Control					
	led					
	Pilot					
	Trial					
Patel et	RCT	N= 84	Methylnaltrexo	The confidence	The was no different	No evidence to
al, 2020,			ne vs placebo,	interval was wide,	Time to rescue-free	support
USA			measure	and a clinically	laxation (hours),	methylnaltrexone
			rescue-free	important difference	compared	compared to
			laxation	cannot be excluded.	methylnaltrexone and	conventional
			(hours), to first		placebo.	laxative.
			bowel			
			movement.			