Point of View *External Ventricular Drain Dressings, a Gap in the Literature and Clinical Practice*

Kristen Langhorne RN, BSN¹, Mary Heitschmidt PhD, APRN, CCRN-K, FAHA²

Citation: Langhorne K, Heitschmidt M. External ventricular drain dressings, a gap in the literature and clinical practice. *International Journal of Critical Care* 2023:17(3): 143-153. doi: 10.29173/ijcc63

Academic Editor(s): Ged Williams, RN, Crit. Care Cert., LLM, MHA, FACN, FACHSM, FAAN and Elizabeth Papathanassoglou, PhD, MSc, RN

Managing Editor: Patricia Zrelak, PhD, RN, NEA-bc, SCRN, CNRN, ASC-BC, CCRN-K, PHN, FAHA

Published: November 2023

Acknowledgments: None

Copyright: © 2023 by the authors. Open access publication under the terms and conditions of the Creative Commons Attribution (CC BY NC) license (https://creativecommons.org/licens es/by-nc/4.0/). ¹ Rush University Medical Center, Neuroscience Intensive Care Unit
² Rush System for Health
Corresponding author: Kristen Langhorne RN, BSN at email: kristenlanghorne@gmail.com

Key words: Critical care, external ventricular drain, dressing, surgical site

INTRODUCTION

External ventricular drains (EVDs) are invasive catheters placed in the ventricle of the brain to drain cerebrospinal fluid (CSF) and monitor intracranial pressure. Although these drains are the gold standard of intracranial pressure monitoring, the care of these drains is highly variable. The average placement time for an EVD is 10.7 days but can range anywhere from 1-28 days (Roitberg et al., 2001). While the use of EVDs is low, patients with EVDs are at high-risk for developing an EVD-related infection. Infection rates with EVD range as high as 27% and as low as 0% (Rahamen et al., 2012; Seig et al., 2018; Walek et al., 2021). The methods used to achieve a near 0% infection rate vary (Capatano et al., 2019; Darrow et al., 2018; Flint et al., 2016; Hill et al., 2012; Rahmen et al., 2012; Seig et al., 2018; Walek et al., 2021). The average reported EVD infection rate decreased to 6% with the addition of antibioticimpregnated catheters (Capatano et al., 2019). There is a paucity of research surrounding EVDs and a lack of formal recommendations for the day-to-day care of these drains globally (Fried et al., 2016; Hepburn-Smith et al., 2016).

The bedside nurse is commonly assigned to change and maintain the EVD dressing. The purpose of the EVD dressing is to keep the insertion site clean and infection-free. In a 2016 review of the literature, Hepburn-Smith and colleagues found evidence for multiple evidence-based practice strategies to manage an EVD dressing and prevent associated infections. The lack of EVD dressing-centered research results in evidence that is often complicated by confounding variables. EVD dressings are often mentioned as a part of a larger care bundle, making it hard to differentiate what intervention aided in a decrease in infection. EVD dressing change practices vary between hospital facilities. For example, there are variations in cleaning solutions, type of dressing used, dressing change interval, and what healthcare staff member is designated to change the dressing (Hepburn-Smith et al., 2016).

POINT OF VIEW

Personally, we have noticed a variation in EVD dressing change practice from working in three different neuroscience intensive care units. It sparked our curiosity to know why one facility uses an EVD dressing protocol over another. What were the formal recommendations? How does research inform the clinical practice of patients with EVDs? Upon further review, we have identified a gap in the literature. Research is limited as the dressing is rarely at the center of EVDrelated research, and when mentioned the EVD dressing is often a part of an EVD infection control bundle with key details of the dressing protocol missing. This makes it hard to determine the impact the dressing has on the rates of ventriculitis.

It has been our experience working in three different academic medical centers neuroscience intensive care units that there has been a common thread of nursing attitudes towards EVDs, their dressing, and the perceived risk of infection. There is often language used in the nursing units that an EVD-related infection is somewhat unavoidable (Hill et al., 2012). Through our literature review, PubMed and CINAL databases were searched from 2001 through 2022. A total of twenty-five articles were reviewed in relation to the inclusion of these keywords in title or abstract: EVDs, EVD dressings, EVD-related infections, ventriculitis, EVD care, EVD maintenance, and nursing care of EVDs. Of those, 18 articles were to be found relevant to the topic. Articles were excluded if they were not in English and not peer-reviewed. Through this review, it is evident that an EVD infection is avoidable. One facility has reported an infection rate of 0.3% over a seven-year period (Flint et al., 2016), which is extremely low.

CONFLICTING FINDINGS

The key factors that need to be included in EVD dressing protocols, guidelines, or policies are frequency of dressing changes, the cleansing agent used at the insertion site, if an adhesive is used, if hair trimming was utilized, which staff member designated to change the dressing, and the specification of sterile technique (Hepburn-Smith et al., 2016). Our extensive literature search was narrowed down to seven articles that reported an infection rate of less than 2% and mentioned the use of an EVD dressing (Table 1).

The main purpose of most of these studies was to examine the EVD care bundle to decrease the rates of ventriculitis. EVD care bundles examine and create guidelines on practices surrounding insertion, CSF sampling, EVD

dressing, catheter type, and antibiotic use. This means there were often substantial changes to other elements of care outside of the EVD dressing. In addition, many of these articles are missing key elements of the dressing change protocol.

- Cleaning solution. Chlorhexidine is usually used to prep and sterilize the skin prior to a procedure. The use of chlorhexidine has been questioned (Checketts, 2012) and supported for EVD care (Scheithauer et al., 2014; Scheithauer et al., 2016). Out of the seven articles examined, four of them mentioned the use of chlorhexidine cleaning solution or biopatch (a protective disc impregnated with the chlorhexidine cleaning solution) (Darrow et al., 2018; Flint et al., 2016; Seig et al., 2018; Walek et al., 2021). Other cleaning solutions mentioned were betadine and povidone-iodine (Capatano et al., 2019; Hill et al., 2012). One article did not mention the cleaning solution used (Rahmen et al., 2012). Two of the articles did not utilize a traditional dressing and instead had the EVD open to air with routine cleaning (timing frequency) of the insertion site using chlorhexidine every eight hours and povidone twice daily (Capatano et al., 2019; Walek et al., 2021).
- Interval of change. Strong variations of how often the dressings are changed or tended to were noted in the literature with no specific evidence on how often an EVD dressing should be changed. In Table 1, two of the studies mention changing the dressing on an as needed basis (Hill et al., 2012; Flint et al., 2017). Another study changes their dressing every 72 hours (Rahmen et al., 2012). The two studies that do not utilize an EVD dressing have specified cleaning routines of twice a day and every eight hours (Capatano et al., 2019; Walek et al., 2021). The remaining two studies made no mention of how often the EVD dressing is changed (Darrow et al., 2018; Seig et al., 2018).
- Staff member designated to change. The staff member designated to change and maintain the EVD dressing varies in the literature. Out of the seven studies analyzed, only three of the studies touch on this. In one study, there was a multidisciplinary task force assembled to identify the gaps of care that could be contributing to their rates of EVD-related infections (Hill et al, 2012). The type of staff member assigned to change the dressing was identified as a barrier to maintaining a clean, occlusive dressing. Initially, the dressings were only changed by the neurosurgical physicians and advanced practice providers, which led to dressing change delays. The task force then decided that the bedside-nurse would be assigned to change the dressings. Of the remaining six articles only three mention the type of staff member in relation

to the EVD dressing (Capatano et al., 2019; Hill et al., 2012; Rahmen et al., 2012).

- Hair Trimming. Hair trimming is often not mentioned within the literature and when it is, it is only noted as part of the insertion practice. EVDs are drains placed within the ventricle of the brain for an average duration of about 10 days, but the range has been reported to up to a month (Roitberg et al., 2001). Due to this extended period, the EVD dressing must be changed due to its inability to remain occlusive. Hair growth is a contributing factor to this. Of the seven articles listed in the data table only two of them mention hair trimming as a part of maintaining a clean dressing (Hill et al. 2012, Rahmen et al., 2012). The two articles that capture EVD insertion site care without an EVD dressing there is no mention of hair trimming after placement (Capatano et al., 2019; Walek et al., 2021).
- Other Factors. The remaining two factors of an EVD dressing, if an adhesive was used or if sterile technique was specifically stated, were not mentioned in the literature. The written protocols that hospitals used for EVD dressing changes were rarely included within the article. This lack of detailed protocol included within articles is related to the EVD dressing not being sole focus of many research studies. It could very well be a part of the dressing change policy, but since the EVD dressing is very rarely focused on in research, specific details are often lost to the reader.
- No Dressing Used. The two most recently published articles in Table 1 have implemented a new style of EVD management, no dressing at insertion site with scheduled cleanings (Capatano et al., 2019; Walek et al., 2021). Upon investigating why this new management style arose, it was ambiguous. The authors stated that there simply was not enough research to support the effectiveness of using an EVD dressing (Capatano et al., 2019). Both articles yielded near 0% infection rates, but the methods to achieve this varied. Cleansing agents differed between the two articles, one using povidone while the other chlorhexidine. The cleansing intervals also differed, once every 12 hours, the other every 8 hours. Walek et al. 2021 reported the results of a 12-year observational study, noting many EVD dressing change practices including the no-dressing protocol. This new management style shows promise and appears safe, but the gap in the literature of not using a dressing is as wide as the literature surrounding using a dressing.

Table 1:

EVD Studies with Near Zero Infection Rates

Research Article	Purpose	EVD	Missing EVD	Compounding	Interventions/	Number of patients in
Title		Dressing	Dressing	Variables	changes	study/ Reported
		Type Used	Elements		surrounding EVD	Infection Rate
					dressings	
Α	A multi-	Change as	None	Revision of the	Responsibility for	Number of patients
Multidisciplinar	disciplinary	needed		CSF sampling	changing the EVD	included in the study:
y Approach to	team was			and EVD	dressing was	unknown – data
End External	assembled	Betadine		flushing policy	changed from the	reported in EVD days
Ventricular	to identify	cleansing			neurosurgical team	
Drain Infections	care gaps	agent		Uniformity is	to the RN	16/1000 EVD days in
in the	and			established		April 2008-June 2008
Neurocritical	implement	Benzoin to		during EVD	Sterile benzoin	
Care Unit	changes to	adhere		insertion, with a	implemented in	July 2008-June 2009
Hill et al., 2012	determine if	dressing		focus on gaps in	place of non-sterile	drop to 4.5/1000 EVD
	overall			sterility	benzoin	days
	EVD-related	Hair				
	infection	trimming as				2009 drop to 1.3/1000
	rates	needed				days
	decreased.					
		Dressing				25 months without a
		changed by				reported EVD-related
		RN				infection (September
						2011 – October 2012)
		Sterile				
		technique				
		used				

International Journal of Critical Care Volume 17 Issue 3

Reducing	A task force	EVD	Cleansing agent	A delay in	Changed from	Number of patients:
Ventriculostomy	responded	dressing	used with	prophylactic	razors to electric	2,911 patients
-Related	to increased	changed q72	dressing	antibiotics was	hair trimmers	
Infections to	infection	hours	changes,	identified/		Study time period: 4
Near-Zero: The	rates and		(DuraPrep used	addressed.	Addressed an issue	years
Eliminating	developed	Benzoin to	before insertion)	Sterility issues	of equipment: prior	
Ventriculostomy	an updated	adhere		addressed with	EVD used being	A reported decrease in
Infection Study	care	dressing	Sterile technique	EVD insertion.	too small	infections from 9.2% to
Rahman et al.,	protocol		not implicitly			1.2% in 2006-2007
2012	surround-	Hair	noted for	Switched to		
	ing EVDs.	trimming	dressing changes	antibiotic EVD		Dropping to < 1% in
				catheters/		2008-2010 and then 0%
		Dressing		equipment kits.		in 2011
		changed by				
		the		Changes to CSF		
		neurosurgi-		sampling		
		cal team		protocol		
A Simple	A long-term	EVD	Hair trimming	Infection	Broad hair	Number of patients
Infection Control	observation	dressing		control protocol	trimming prior to	included in the study:
Protocol Durably	following	changed as	Staff designated	included: CSF	insertion	308 EVD placements
Reduces External	infection	needed	to change the	sampling, EVD		(unknown # patients)
Ventricular	control		dressing	insertion		
Drain Infections	policy	Chlorhexidin		elements		Study period: 7 years
to Near-Zero	change	e cleansing		(tunneling		
Levels	related to	agent and		antibiotic		Over 7 years the CSF
Flint et al., 2016	EVDs.	Biopatch		catheter), strict		culture positivity
		used		EVD		decreased to 0.3% from
				manipulation		9.8%
		Benzoin and		protocols for		
		SteriStrips to		flushing		

Creation of an External Ventricular Drain Registry from a Quality Improvement Project Darrow et al., 2018	Analyzed the effective- ness of bundled protocols on the reduction of EVD-related infections.	adhere dressing Sterile technique Chlorhexi- dine Biopatch "Barrier Island" dressing used	EVD dressing interval of change Cleansing agents at the insertion site Hair trimming Staff designated to change dressing Sterile technique not implicitly noted for dressing changes	Changes to: EVD insertion: tunneling EVD catheter, pre- procedural antibiotics standardization CSF sent out every 5 days	Broad hair trimming prior to insertion	Number of patients included in study: unknown – data in EVD days Study period: 5 years retrospective review and 18 months post intervention 2 infections per 1924 EVD days prior to protocol implementation 0 infections per 700 EVD days after
						protocol implementation
Impact of an External Ventricular Drain Placement	Analyzed the effect of an EVD handling	Chlorhexi- dine Biopatch	EVD dressing change interval	Changes made to the insertion protocol	Skin shaved prior to insertion	Number of patients included in the study: Pre-protocol: 81 EVDs;

International Journal of Critical Care Volume 17 Issue 3

and Handling Protocol on Infection Rates: A Meta-Analysis and Single Institution Experience Seig et al., 2018	protocol related to infection rates. A meta- analysis was conducted to formulate protocol implementa tion.		Cleansing agent used for changes Hair trimming Staff designated to change Sterile technique not implicitly noted for dressing changes	Implementation of a CSF sampling protocol No use of prophylactic antibiotics		Post-protocol: 184 EVDs Post protocol Study period: 15 months post protocol Before protocol implementation infection rate was 12% over eight months, it decreased to 0% over 15 months
Standardized Ventriculostomy Protocol without an Occlusive Dressing: Results of an Observational Study in Patients with Aneurysmal Subarachnoid Hemorrhage Capatano et al., 2019	Reviewed the effective- ness of implementi ng a standardize d placement and manage- ment of EVDs without an occlusive dressing.	No dressing Scalp cleansed with povidone twice daily by nursing staff	Hair trimming	Routine CSF sampling	Dressing protocol prior to interventions not mentioned The previous rate of infection at this facility was not listed	Number of patients included in the study: 91 Study period: 2 years 0 positive CSF cultures per 347 CSF studies drawn (approximately 4 studies obtained per patient; 3 CSF + cultures were considered false positives)

International Journal of Critical Care Volume 17 Issue 3

Decreasing	Analyzed	No dressing	Staff designated	Interventions	Initial EVD policy	Number of patients
External	changes in		to change	were grouped	not mentioned	included in study:
Ventricular	infection	Site care q8	dressing/site	into quarters of	(before CHG	unknown
Drain Infection	control	hrs with	care,	time over	introduction)	
Rates in the	protocols	alcoholic		twelve years,		Study period: 12 years
Neurocritical	related to	chlorhexi-	Hair trimming	group 1-3+		
Care Unit: 12-	EVD care	dine		interventions in		The interventions that
Year	over twelve		Prior policy:	the same time		resulted in the most
Longitudinal	years at a	Previous	frequency of	frame, making		significant drops in
Experience at a	single	policies	dressing change,	it difficult to		infection rates were:
Single	facility.	listed:	insertion site	determine		stopping routine CSF
Institution;		chlorhexi-	cleansing agent,	which was		sampling from CSF
World		dine bio-	hair trimming,	significant		reservoir, EVD catheter
Neurosurgery		patch and	staff designated			tunneling, and
		dressing	to change			cutaneous antiseptic
Walek et al. 2021			dressing			use of alcoholic
						chlorhexidine
						Final infection results
						of 12-year observation:
						1.98 infections/ 1000
						EVD days

CONCLUSION

Considering the importance of ventriculostomy dressing protocols in preventing ventriculostomy-associated infection, there is a paucity of related literature except as part of a larger care bundle. It is hard to determine the scale of impact that the EVD dressing has on infection rates due to limited focused research specifically with EVD dressings. This commentary aims to draw attention to the lack of EVD dressing focus within the clinical and research community. There is no standardization of the EVD dressing throughout healthcare, making patients with EVDs a higher risk for long-term complications or potential infections. We urge fellow clinicians to conduct their own EVD dressing research studies. We also call for creating national data registries that track EVD dressing outcomes so that we can learn from each other the best way EVDs should be dressed. As EVD catheters are invasive and in place for an extended time, optimizing daily care is imperative for this susceptible patient population.

Author Bio:

Kristen Langhorne RN, BSN, is a nurse at Rush University Medical Center, on the Neuroscience Intensive Care Unit.

Mary Heitschmidt PhD, APRN, CCRN-K, FAHA, is the Director of Clinical Research at Rush System for Health and an Associate Professor at Rush University.

Disclosures: Declarations of interest, none.

REFERENCES

- Catapano JS, Rubel NC, Veljanoski D, Farber SH, Whiting AC, Morgan CD, Brigeman S, Lawton MT, Zabramski JM. Standardized ventriculostomy protocol without an occlusive dressing: results of an observational study in patients with aneurysmal subarachnoid hemorrhage. *World Neurosurgery* 2019:131;e433–e440. <u>https://doi.org/10.1016/j.wneu.2019.07.183</u>
- Checketts MR. Wash & go--but with what? Skin antiseptic solutions for central neuraxial block. *Anaesthesia* 2012:67(8);819–822. https://doi.org/10.1111/j.1365-2044.2012.07263.x
- Darrow DP, Quinn C, Do TH, Hunt M, Haines, S. Creation of an external ventricular drain registry from a quality improvement project. *World Neurosurgery* 2018:114;84–89. https://doi.org/10.1016/j.wneu.2018.03.018
- Flint AC, Toossi S, Chan SL, Rao VA, Sheridan W. (2016). A simple infection
control protocol durably reduces external ventricular drain infections to near-
zero levels. World Neurosurgery 2016:99;518–523.

https://doi.org/10.1016/j.wneu.2016.12.042

- Fried HI, Nathan BR, Rowe AS, Zabramski JM, Andaluz N, Bhimraj A, Guanci MM, Seder DB, Singh JM. The insertion and management of external ventricular drains: an evidence-based consensus statement: a statement for healthcare professionals from the neurocritical care society. *Neurocritical Care* 2016:24(1);61–81. https://doi.org/10.1007/s12028-015-0224-8
- Hepburn-Smith M, Dynkevich I, Spektor M, Lord A, Czeisler B, Lewis A. Establishment of an external ventricular drain best practice guideline. *Journal of Neuroscience Nursing* 2016:48(1);54-65. doi: 10.1097/JNN.00000000000174.
- Hill M, Baker G, Carter D, Henman LJ, Marshall K, Mohn K, Moody E. A multidisciplinary approach to end external ventricular drain infections in the neurocritical care unit. *The Journal of Neuroscience Nursing* 2012:44(4);188–193. https://doi.org/10.1097/JNN.0b013e3182527672
- Roitberg BZ, Khan N, Alp MS, Hersonskey T, Charbel FT, Ausman JI. Bedside external ventricular drain placement for the treatment of acute hydrocephalus. *British Journal of Neurosurgery* 2001:15(4);324–327. https://doi.org/10.1080/02688690120072478
- Rahman M, Whiting JH, Fauerbach LL, Archibald L, Friedman WA. Reducing ventriculostomy-related infections to near zero: the eliminating ventriculostomy infection study. *Joint Commission Journal on Quality and Patient Safety* 2012: 38(10);459–464. https://doi.org/10.1016/s1553-7250(12)38061-6
- Scheithauer S, Möller M, Höllig A, Marx G, Thoröe S, Lopez-Gonzalez L, Reinges MH, Lemmen SW. Are chlorhexidine-containing dressings safe for use with ventricular drainages? *Infection* 2014:42(3);545–548. https://doi.org/10.1007/s15010-014-0596-2
- Scheithauer S, Schulze-Steinen H, Höllig A, Lopez-Gonzalez L, Hilgers RD, Reinges MH, Marx G, Lemmen S. (2016). Significant reduction of external ventricular drainage-associated meningoventriculitis by chlorhexidinecontaining dressings: a before-after trial. *Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America* 2016:62(3);404–405. https://doi.org/10.1093/cid/civ887
- Sieg EP, Schlauderaff AC, Payne RA, Glantz MJ, Simon SD. Impact of an external ventricular drain placement and handling protocol on infection rates: a metaanalysis and single institution experience. *World Neurosurgery* 2018:115;e53–e58. https://doi.org/10.1016/j.wneu.2018.03.160
- Walek KW, Leary OP, Sastry R, Asaad WF, Walsh JM, Mermel L. Decreasing external ventricular drain infection rates in the neurocritical care unit: 12-year longitudinal experience at a single institution. *World Neurosurgery* 2021:150; e89–e101. https://doi.org/10.1016/j.wneu.2021.02.087